skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Rakshit, Suvendu"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract We present results from a high-cadence multiwavelength observational campaign of the enigmatic changing-look active galactic nucleus 1ES 1927+654 from 2022 May to 2024 April, coincident with an unprecedented radio flare (an increase in flux by a factor of ∼60 over a few months) and the emergence of a spatially resolved jet at 0.1–0.3 pc scales. Companion work has also detected a recurrent quasi-periodic oscillation (QPO) in the 2–10 keV band with an increasing frequency (1–2 mHz) over the same period. During this time, the soft X-rays (0.3–2 keV) monotonically increased by a factor of ∼8, while the UV emission remained nearly steady with <30% variation and the 2–10 keV flux showed variation by a factor ≲2. The weak variation of the 2–10 keV X-ray emission and the stability of the UV emission suggest that the magnetic energy density and accretion rate are relatively unchanged and that the jet could be launched owing to a reconfiguration of the magnetic field (toroidal to poloidal) close to the black hole. Advecting poloidal flux onto the event horizon would trigger the Blandford–Znajek mechanism, leading to the onset of the jet. The concurrent softening of the coronal slope (from Γ = 2.70 ± 0.04 to Γ = 3.27 ± 0.04), the appearance of a QPO, and the low coronal temperature ( k T e = 8 3 + 8 keV ) during the radio outburst suggest that the poloidal field reconfiguration can significantly impact coronal properties and thus influence jet dynamics. These extraordinary findings in real time are crucial for coronal and jet plasma studies, particularly as our results are independent of coronal geometry. 
    more » « less
    Free, publicly-accessible full text available March 10, 2026
  2. Variability can be the pathway to understanding the physical processes in astrophysical jets. However, the high-cadence observations required to test particle acceleration models are still missing. Here we report on the first attempt to produce continuous, > 24 hour polarization light curves of blazars using telescopes distributed across the globe, following the rotation of the Earth, to avoid the rising Sun. Our campaign involved 16 telescopes in Asia, Europe, and North America. We observed BL Lacertae and CGRaBS J0211+1051 for a combined 685 telescope hours. We find large variations in the polarization degree and angle for both sources on sub-hour timescales as well as a ∼180° rotation of the polarization angle in CGRaBS J0211+1051 in less than two days. We compared our high-cadence observations to particle-in-cell magnetic reconnection and turbulent plasma simulations. We find that although the state-of-the-art simulation frameworks can produce a large fraction of the polarization properties, they do not account for the entirety of the observed polarization behavior in blazar jets. 
    more » « less
  3. Binaries containing a compact object orbiting a supermassive black hole are thought to be precursors of gravitational wave events, but their identification has been extremely challenging. Here, we report quasi-periodic variability in x-ray absorption, which we interpret as quasi-periodic outflows (QPOuts) from a previously low-luminosity active galactic nucleus after an outburst, likely caused by a stellar tidal disruption. We rule out several models based on observed properties and instead show using general relativistic magnetohydrodynamic simulations that QPOuts, separated by roughly 8.3 days, can be explained with an intermediate-mass black hole secondary on a mildly eccentric orbit at a mean distance of about 100 gravitational radii from the primary. Our work suggests that QPOuts could be a new way to identify intermediate/extreme-mass ratio binary candidates. 
    more » « less
  4. Abstract We present the main results from a long-term reverberation mapping campaign carried out for the Seoul National University AGN Monitoring Project (SAMP). High-quality data were obtained during 2015–2021 for 32 luminous active galactic nuclei (AGNs; i.e., continuum luminosity in the range of 1044–46erg s−1) at a regular cadence, of 20–30 days for spectroscopy and 3–5 days for photometry. We obtain time lag measurements between the variability in the Hβemission and the continuum for 32 AGNs; 25 of those have the best lag measurements based on our quality assessment, examining correlation strength and the posterior lag distribution. Our study significantly increases the current sample of reverberation-mapped AGNs, particularly at the moderate-to-high-luminosity end. Combining our results with literature measurements, we derive an Hβbroadline region size–luminosity relation with a shallower slope than reported in the literature. For a given luminosity, most of our measured lags are shorter than the expectations, implying that single-epoch black hole mass estimators based on previous calibrations could suffer large systematic uncertainties. 
    more » « less
  5. Abstract The broad-line region (BLR) size–luminosity relation has paramount importance for estimating the mass of black holes in active galactic nuclei (AGNs). Traditionally, the size of the HβBLR is often estimated from the optical continuum luminosity at 5100 Å, while the size of the HαBLR and its correlation with the luminosity is much less constrained. As a part of the Seoul National University AGN Monitoring Project, which provides 6 yr photometric and spectroscopic monitoring data, we present our measurements of the Hαlags of high-luminosity AGNs. Combined with the measurements for 42 AGNs from the literature, we derive the size–luminosity relations of the HαBLR against the broad Hαand 5100 Å continuum luminosities. We find the slope of the relations to be 0.61 ± 0.04 and 0.59 ± 0.04, respectively, which are consistent with the Hβsize–luminosity relation. Moreover, we find a linear relation between the 5100 Å continuum luminosity and the broad Hαluminosity across 7 orders of magnitude. Using these results, we propose a new virial mass estimator based on the Hαbroad emission line, finding that the previous mass estimates based on scaling relations in the literature are overestimated by up to 0.7 dex at masses lower than 107M
    more » « less